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STRUCTURAL OPTIMIZATION WITH PROBABILITY 

OF FAILURE CONSTRAINT 

By Dhanjoo N. Ghista 
Ames Research Center 

SUMMARY 

Minimum weight structural design consists in determining the set of 
design parameters of the structure which makes the weight of the structure a 
minimum without violating the constraints imposed on the structure. 

In a structural optimization problem, where the constraints are the 
limiting stresses, failure is absolutely prevented, that is, with a probabil- 
ity of 1. Such absolute safety not only limits the minimization of weight but 
is idealistic and therefore impractical, for in actual systems limits must be 
imposed within which failure can occur. The limiting stress constraint, 
having a failure probability of 0, is hence replaced by a limiting probability 
of failure constraint. 

In this paper, the concept of probability of failure is explained for a 
general structural system. under simultaneous and alternative load systems. It 
is then shown how the probability of failure constraint can be formulated in 
terms of the structural design parameters. This constraint is developed in 
detail for optimizing a simple truss whose design parameters are the section 
areas of the members. The optimizing weight function and the constraint in 
terms of the design parameters define the mathematical model of the structural 
optimization problem. The structural synthesis method is suggested for 
solving the mathematical programming problem, and it is shown how the proba- 
bility of failure constraint can be incorporated in the synthesis technique. 
The application of the constraint is illustrated by means of two simple 
examples with reference to the truss. 

INTRODUCTION 

Minimum weight structural design consists in determining the set of 
design parameters of the structure which makes the weight of the structure a 
minimum and at the same time ensures that the structure is safe under the 
governing load system. To determine whether a structure is safe or not, the 
computed design stresses are compared with the permissible stresses. The 
structure will fail if the stress in any component exceeds the allowable 
limit. 

In a structural optimization problem, where the constraints are the 
limiting stresses, the extent to which the weight can be diminished is 
governed, then, by the limiting stress constraint. Imposing this constraint 
prevents failure absolutely, that is, with a probability of 1. Now the design 



stresses in the components of a structure are a function of the loading, the 
structural design parameters, namely, the sizes of the elements and the 
material properties. The permissible stress or the failure stress for a 
particular material is a physical property of the material. 
have to be estimated to represent all possible relevant conditions. 
experience shows that it is possible to represent a material property by a 
frequency distribution. Such a distribution, then, furnishes its most probable 
value, that is, its mean and its probable range of fluctuation represented by 
its standard deviation. Similarly, the applied loading is a random variable 
and may also be represented by a frequency distribution. 
assessment to be made of the most probable conditions, fluctuation ranges, and 
the probability that certain extremes w i l l  occur. 

The properties 
Past 

This enables an 

It is seen, then, that to prevent failure absolutely, extreme fluctua- 
tions of load and permissible stresses would have to be taken into account, 
that is, the upper and lower extremes of the load and permissible stress. 
Such absolute safety not only limits the minimization of weight but is ideal- 
istic. On actual systems, limits must be imposed within which failure can 
occur. For the most conservative system, failure can be made highly improb- 
able by making its probability small but it is impractical to attempt to 
prevent it absolutely. The limiting stress constraint, having a failure 
probability of 0, is hence replaced by a limiting probability of failure 
constraint. 

In assigning probability of failure to a structure, a compromise has to 
be made between the level of economy to be maintained and the amount of risk 
a designer is prepared to undertake. Consider now, as examples, two struc- 
tural systems: (1) a system of limited purpose mission with a large number of 
units per mission, such as missiles, (2) a multipurpose single trial system, 
such as a Mars probe lander. In the case of missiles, say if 50 missiles were 
to be deposited over an area, it does not matter if 1 or 2 do not come off and 
fail to accomplish the mission. So it pays not to overdesign the missile and 
to allow a possibility of failure of 1 or 2 out of 50 as a result of stresses 
exceeding their limiting values. This means that in the design of the missile, 
the probability of failure should be less than or equal to 0.02 o r  0.04. 
a constraint, as opposed to a failure probability of 0, results in consider- 
able saving in the weight of the missile. In the case of a single trial 
system such as a Mars probe lander, the probability of failure would have to 
be extremely small, say 1 in lo7. 

Such 

A reliability approach to structural design has been recognized increas- 
ingly during the past decade (see Bibliography) ; the researchers have stressed 
the problems of introducing realistic safety factors and of proportioning a 
structure to meet a prescribed reliability. This literature indicates the 
need for a method of systematic determination of the minimum weight design'of 
a structure within limits of a prescribed probability of failure. 
then, endeavors to present a compact mathematical model of the structural 
optimization problem wherein the merit function to be optimized is the struc- 
tural weight, and the probability of failure of the structure is expressed in 
terms of the design parameters and employed as a constraint in the 
optimization problem. 

This paper, 
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In this paper, tne concept of probability of failure is explained for a 
general structural system under simultaneous and alternative load systems. 
It is then shown how the probability of failure constraint can be formulated 
in terms of the structural design parameters. This constraint is developed in 
detail for the optimization of a simple truss whose design parameters are the 
section areas of the members. The mathematical model of the structural opti- 
mization problem is defined by the optimizing weight function and the con- 
straint in terms of the design parameters. The structural synthesis method is 
suggested for solving the mathematical programming problem, and it is shown 
how the probability of failure constraint can be incorporated in the synthesis 
technique. The application of the constraint is illustrated by means of two 
simple examples with reference to the truss. 

NOTATION 

ith design parameter (area of the ith member of the truss, with 
i = 1,2 for bars OA and OB, respectively) 

Ai 

E modulus of elasticity 

failure stress of the ith element, taken to be a normally Fi 
distributed random variable 

probability of failure of the ith element under ,jth loading 

probability of failure of the structure under loading Q 

Pi j 

j 

probability of failure of the structure 

,jth loading, taken to be a normally distributed random variable 

mean of random variable 

force in ith member under ,ith loading 

PF 

Q . (  j=1,2) J - 
‘j ‘j 

Ri j 

W structural weight 

applied stress in ith element 

random variable [F - (RijAi) 1 
f i 

gi j 
2 length of either member of the truss 

P density of material for the truss 

0 standard deviation of random variable Q 
j ‘ 3  
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ANALYSIS 

Factors Influencing the Probability of 
Failure of the Structure 

Dead load.- Factors causing variation in dead load are the dimensions of 
the structure and the specific weight of the materials. 

Live load.- To have a complete representation of live load, it is neces- 
sary to know the most probable conditions of loading with a high frequency of 
occurrence and, at the sane time, to allow for certain adverse conditions that 
could occur. For example, if the loading represents wind load, one must know 
what percentage of time the wind velocity is in a certain range and also the 
magnitude of, say, hundred-year gales. 

The variation in loading, its most probable value, and estimates of cer- 
tain extreme cases can be represented by a frequency distribution with given 
mean and standard deviation. 

Structural stiff_n_e_s_s.- The structural stiffness depends upon the struc- 
The modulus of elas- tural configuration and the elasticity of the members. 

ticity of the structure is a constant, statistically only. It can be 
represented by a frequency distribution with given mean and standard devia- 
tion. The sizes and the dimensions of the structures can have definite 
variations about their mean values if their tolerances are specified. The 
design stress in a member is then a function of the loading and the 
structural stiffness. 

Failure stre.ss.- The failure stress is a physical property of the 
material. 
manufacturing process. It, too, is represented by a frequency distribution. 

Its variability depends on the control exercised during 

Development of Probability of Failure Constraint 

Consider a structure made up of r elements or components. Let Q1 
and Q2 represent two independent loading systems; Q1 and Q2 are random 
variables, normally distributed with means 
uQl and 0Q2, respectively. It could happen that both Q1 and Q2 would act 
simultaneously as dead and live loads on the Structure. On the other hand, 
the structure could be undergoing alternative loadings, in which case either 
Q1 or Q2 would be acting but not together. Assume that the mode in which 
each component or element fails is known. The corresponding failure stress 
(of the ith element) is denoted by Fi, which is taken to be normally dis- 
tributed with mean Fi and standard deviation uFi. It is required that the 
probability of failure of the structure not exceed a fixed value a: 

- 
Q1 and Q2 and standard deviations 

Let the parameter Ai represent the size of a component to be deter- 
mined. The design parameters Ai constitute the variables for the optimiza- 
tion problem. For a given structure, the design stresses are functions of 
member sizes Ai and the elasticity E of the material. For the sake of 
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convenience, A i  and E are not taken to be random variables,  but constants, 
i n  order t o  simplify t h e  determination of t h e  frequency d i s t r ibu t ion  of t h e  
applied stress. The weight (W) of t h e  s t ruc ture  i s  expressed as a function 
of t h e  design parameters A i .  The optimization problem consis ts  i n  determin- 
i n g  A i  so  t h a t  W i s  a minimum and t h e  probabili ty of f a i l u r e  of t h e  
s t ruc ture  PF i s  less than or equal t o  a. 

Let  PF and PF represent the  probabi l i t i es  of f a i l u r e  of t h e  

s t ruc ture  under loadings Ql and Q2, respectively.  If t h e  loadings Ql and 
Q2 are such t h a t  they may or may not ac t  simultaneously, then t h e  s t ruc ture  
can f a i l  when e i t h e r  Ql or Q2 or both Ql and Q,2 are act ing on the  s t ruc -  
ture.  Then, t h e  desired probabi l i ty  of f a i l u r e  of t h e  s t ruc ture  i s  t h e  
probabi l i ty  t h a t  it w i l l  f a i l  under Q1 or Q2 or Ql and Q2 act ing together 

Ql Q2 

[ PFQ~ or  &2 or ( &1 and Q2) I and i s  given by 

r 1 

For any loading, t h e  probabi l i ty  of failure of t he  s t ruc ture  (PF) i s  
expressed i n  terms of t h e  probabi l i t i es  of f a i l u r e  of i t s  consti tuent 
elements (pi) as follows: 

pF = 1 - (1 - P1) (1  - P2) . . . (1 - Pi)  . . . (1 - Pr) (2) 

A s t ruc tu ra l  element w i l l  f a i l  when the  s t r e s s  ( f i )  i n  it, due to t h e  
applied loading, exceeds t h e  allowable l i m i t  F i .  Let P i  denote t h e  
probabi l i ty  of failure of an element. Thus 

The quantity of i n t e r e s t  i s ,  then, t h e  random var iab le  (F i  - f i ) .  
consider t h e  d i s t r ibu t ion  of f i .  It i s  a function of t h e  loading and t h e  
s t i f fnes s  of t h e  s t ruc ture .  The latter quantity” is  assumed to be a constant, 
fo r  t h e  sake of s implici ty .  Hence, if t h e  loading i s  normally dis t r ibuted,  
f i  w i l l  a l s o  be normally d is t r ibu ted .  Also, F i  i s  normally d is t r ibu ted .  
The random variable  (F i  - f i )  i s  thus normally d is t r ibu ted .  NOW given t h e  

Let us 
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values of the design parameters 
determinate; in other words, the means and standard deviations are known. It 
is then possible to determine the probabilities (Pi) of the constituent 
elements and hence from equations (1) and (2)  the probability of failure of 

Ai, the random variables (Fi - fi) all become 

the structure, that is, either or PF , as the case may be. 
pFQl and Q 2  Q 1  o r  Q 2  

Thus, PF is a function of the design parameters Ai. 

= V(A,, A2, . . . Ai, . . . Ar) 
Q 1  o r  Q2 o r  Q1 + 

or PF 
pF = (PFQ1 and Q2 

The weight (W) of the structure can also be expressed in terms of the design 
parameters: 

The optimization problem consists in optimizing the function W (eq. ( 5 ) ) ,  
subject to the constraint that 
permissible limit a. NOW that the optimizing function and the constraint 
have been expressed in terms of  the design parameters, the stage is set f o r  
the optimizing process. To this end, the method of structural synthesis 
(ref. 2) can be employed. 

PF (eq. (4)) is less than or equal to the 

Optimization Method 

The structural optimization problem being considered is a mathematical 
programming problem for determining the optimum set of design parameters that 
minimizes the weight of the structure and restricts its probability of failure 
below a certain value. The method of structural synthesis is suggested for 
solving this problem. 

The synthesis method consists in repeated and systematic redesign of a 
structure by means of its governing principles without violating the con- 
straints imposed on the structure. A trial set of parameters is initially 
selected. For this set, the probability of failure of the structure under 
either Q1 or Q 2  is calculated and checked to see if it exceeds the allowable 
limit a. If not, the assumed values of the design parameters are altered so 
as to diminish the weight. This modification is made according to the govem- 
ing principles of the method. With every modification, the probability of 
failure is calculated and checked as to whether it exceeds the allowable 
limit. The optimum set of prameters is said to have been reached when it is 
no longer possible to cause modifications in them, so as to diminish the 
weight of the structure without violating the probability of failure criterion 
PF 5 a. 

The method is qualitatively illustrated with a simple problem which 
requires only two design parameters to define a given design. 
situation can be easily graphed so that the problem constraints and the 

Such a 
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solution technique can be visualized. The design problem is to determine the 
optimum values of areas A1 and A2 of the two-bar truss (fig. 1) so as to 
minimize (without the probability of failure exceeding a) the weight of the 
truss. Figure 2 is a plot in what may be called the design parameter space. 
The design parameters Ax and A2 are the abscissa and ordinate, so that any 
point in the design space represents a design. The weight contours 

W(Al,A2) = cm 
are plotted in the design space for different values (C,) of the structural 
weight. The constraint curve 

PF(A~,A~) = a 

is also shown plotted in the design space. Notice that the feasible region 
consisting of the set of all points of designs is bounded by the inequality 

PF(Al>A2) < a 

Clearly, the design satisfying the constraint which has the minimum weight 
occurs at M, the point of tangency of the minimum possible valued weight 
contour to the constraint curve. When there are more than two design param- 
eters, such a graphical solution is not possible. In such a case, the 
synthesis method provides means of systematic convergence to optimum design 
from a trial design. The two-dimensional case makes it possible to illustrate 
graphically the principles of this technique by means of figure 2. 

In terms of the design space, a design point could be 

(1) A free point (e.g., points Fn, n = 1,2, . . .), if it lies 
in the feasible region 

(2) A bound point (e.g., point B), if it lies on the constraint 
curve 

(3) A violation point V, if it violates the constraint. 

In essence, the method consists of a combination of three directives in terms 
of effecting changes in the design parameters at a current point, depending on 
whether it is a free point, a bound point, or a violation point (see ref. 2 
for a more elaborate presentation of the method). They are as follows: 

(a) If the current design point is free (Fn), changes are so made 
that the rate of change of weight is a maximum. This corresponds 
to a travel in the design space in the direction of the gradient 
of the weight function. 

(b) If the current design point is a bound point (B), travel to an 
alternate point on the same weight contour and adopt directive 
(a) 
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( c )  If the  current design point is  a v io la t ion  (V) ,  retreat t o  the  
previous design point and t r a v e l  t o  an a l t e r n a t e  point on the  
same weight contour from where it i s  possible t o  adopt d i rec t ive  
(4 

Figure 2 shows a probable convergence path from a t r ia l  design point 
t h e  optimum design point M. 

F1 t o  

Optimization o f _ a _ t r u s s  f o r  a giyen probabi l i ty  of failure constraint .-  
Consider a s t a t i c a l l y  determinate truss AOB ( f i g .  1). 
of (1) two loadings which m y  or may not occur simultaneously. 
Both Q1 and Q2 a r e  random variables,  normally d is t r ibu ted  with m e a n s  $1 
and G2 and standard deviations 
stress F, which i s  a random variable  normally d is t r ibu ted  with mean F and 
standard deviation OF; and (3) the  probabi l i ty  a t h a t  t h e  s t ruc ture  w i l l  
f a i l  under e i t h e r  ~1 o r  Q2 or (QI and Q2) , namely [mel or Q2 or (Q1 and Qz)]. 

The given data  consis t  
Q1 and Q2 

O Q ~  and 0Q2, respectively; (2) f a i l u r e  

The design parameters t o  be determined are areas Al and A2 of t h e  bars  
OA and OB, respectively.  Areas Al and A 2  a r e  unknown constants. It i s  
required t o  minimize the  weight ( W )  o f  t h e  t r u s s  subject  t o  the  constraint  
t h a t  t he  probabi l i ty  that it fails  under Q1 o r  Q2 does not exceed a. 

If p i s  the  densi ty  of  the  mater ia l  and 2 the  length of each bar, 
then the  weight ( W )  of t he  t r u s s  i s  given by 

L e t  Rll and RE1 denote the  forces i n  the  bars  OA and OB under the load 
Q1, and R12 and RZ2, the  forces i n  OA and OB under the  loading Q2. Let 
Pll and P21 OA and OB, respec- 
t i ve ly ,  under the  loading Q1; and P12 and P22 denote t h e  probabi l i t i es  of 
f a i l u r e  of bars  OA and OB, respectively,  under the  loading Q2. NOW, 

denote the  probabi l i ty  of failure of bars  

Pij  = P r$ > F) 

where i = 1, 2 f o r  t he  bars  OA and OB, respectively,  and j = 1, 2 f o r  the  
two load systems. Under the  act ion of the  load Q2, t he  bar  OB is i n  com- 
pression and is, hence, l i a b l e  t o  buckle. However, it i s  assumed that the  bar  
OB 
mater ia l  at  the  s t r e s s  F before the  c r i t i c a l  buckling stress i s  reached. 

has a low slenderness r a t i o  and w i l l  consequently f a i l  by yielding of the  

Let g i j  denote the  random variable  F - (Ri j /Ai ) ;  then 

8 



P i j  = P(gij  < 0) 

It is  necessary t o  examine the  random variable  g t o  be able  t o  determine 
Pij. I n  general 

i j  

= F  -Rij 
g i j  A i  

Qj = F -  
C .  .(@)Ai 

1 J  

where Cij(8)  i s  a function of 8 .  Now since 8 is  a constant, C i j  is  a 
constant; a l s o  Ai i s , i n  t h i s  d i s t r ibu t ion  equation, a constant, and 
F and Q j  are normally d is t r ibu ted .  Hence, g i j  i s  a normally d is t r ibu ted  
random variable.  The mean and standard deviation of  t he  d i s t r ibu t ion  gij  are given as mean 

standard deviation 

0 g i  j 

The constant C i j  i s  represented as follows: 

C 1 1  = 2 cos 8 , f o r  ba r  OA under loading Q1 
C 2 1  = 2 cos 8 , f o r  bar  OB under loading Q 1  
C 1 2  = 2 s i n  8 , f o r  bar  OA under loading Q2 
C 2 2  = 2 s i n  8 , f o r  ba r  OB under loading Q2 

NOW, t he  probabi l i ty  of f a i l u r e  

The probabi l i ty  of failure of t h e  s t ruc ture  is  

= P F Q ~  + ?FW - PFQ~PFQ~ (1-3) 
[ q q l  or Q2 or (Ql and Q2) 1 

where 



In the characteristics of the distribution 
quantities F, r ~ ~ ,  Qj, oQ., and Cij are available from the given data. The 

only unknown quantity is Ai. Thus, the characteristics of gij are unknowns 
in Ai; that is, they are unknown functions in the variable Ai. Hence, Pij 
(eq. ( 1 2 ) )  is also a function of the variable Ai. From equation (l3), the 
probability of failure of the structure is an unknown function in the vari- 
ables 

gij (eqs. (10) and (ll)), the - - 

J 

A1 and A2 (i.e., PF = PF(A1, A2)). The condition 

PF = PF(A~, ~ 2 )  5 a (16) 
is thus a constraint in the variables A1 and A2. For the structural optimi- 
zation problem, the next function is the weight W of the truss (given by 
eq. (6)), the constraint is represented by equation (16), and the design 
parameters are Al and A2. The synthesis method can then be employed to 
obtain the optimum set of design parameters A1 and A2 so that W is a 
minimum and PF does not exceed a. 

NUMERICAL EXAMPLES 

The above sample problem 

F = 15,000 lb/in.2, 

Q1 = 30,000 lb, 62 = 

- 

- 

aQ1 = aQ2 = 1,000 

e = 45' 

(1) PF = 0.01 

is solved for the following two sets of data: 

aF = 500 

30,000 lb 

The graphical solutions of the problem are presented in figure 3. The 
optimum design parameters for the two cases are: (1) A1 = 1.61.5 in.2, 
A2 = 1.615 in.2 with the weight parameter 
A1 = 1.524 in.2, AB = 1.524 in.2 with the weight parameter 

W/p2 = 3.23 in.2, and (2 )  
W/p2 = 3.048 in.2. 

On the other hand, if the idealistic version of failure (PF 0) were 
adopted (i.e., if failure were prevented with certainty in designing the 
truss), then extreme values of loading and allowable stress would have to be 
considered. Let QE be the upper extreme value of loadings Q,l and Q2 such 
that the probability of the load exceeding 
above data QE = 36,000 lb. Let FE represent the lower extreme value of the 
stress F such that the probability of the stress being less than FE is 

QE is 0.987~10-~; then for the 
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0.987X10-9; then f o r  t he  above da ta  

the  design parameters a r e  
parameter ~ / p 2  = 4.28 in.2. 

FE = 12,000 p s i .  For t h i s  case, then, 

A 1  = 2.14 in.2, A2 = 2.14 in.2, and the  weight 

CONCLUDING REMARKS 

The concept emphasized i n  t h i s  paper i s  the  employment of probabi l i ty  of 
failure constraint  i n  the  mathematical programming problem t o  determine the  
s e t  of design parameters which minimizes the  weight of t he  s t ruc ture .  It i s  
shown how the  probabi l i ty  of failure constraint  of a s t ruc tu re  can be formu- 
l a t ed  i n  terms of t he  design parameters; then, knowing t h e  optimizing weight 
function i n  terms of t he  design parameters defines the  mathematical model of 
t he  s t r u c t u r a l  optimization problem completely. 

It i s  seen t h a t  f o r  t h e  same loading, a t r u s s  designed f o r  a probabi l i ty  
of f a i l u r e  of 0.2 i s  l i g h t e r  than t h a t  designed f o r  a probabi l i ty  of failure 
of 0.01. However, both these  s t ruc tures  a r e  much l i g h t e r  than  t h a t  designed 
t o  prevent f a i l u r e  absolutely,  t h a t  i s ,  designed f o r  PF + 0. The probabil-  
i t i e s  of f a i l u r e  of 0.2 and 0.01 a r e  r e a l i s t i c  compared t o  the  i d e a l i s t i c  
probabi l i ty  of f a i l u r e  of zero. If these  probabi l i t i es  a r e  a r r ived  a t  by a 
judicious compromise between t h e  weight saving desired and t h e  amount of r i s k  
t h a t  could be afforded, then it can be seen t h a t  considerable weight can be 
saved by designing t h e  s t ruc tu re  f o r  r e a l i s t i c  probabi l i t i es  of f a i l u r e .  

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  C a l i f . ,  Sept. 12, 1966 
124-08-06-01-21 
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Figure 1.- Truss being considered for explanation of probability of 
failure constraint. 
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Figure 2.- Design parameter space for the truss of figure 1. 
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Figure 3.- Design parameter space showing the graphical solutions of the 
truss-optimization numerical examples. 
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